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Appendix 
Step-by-Step: Quantitative analysis of cost 
functions in hotels and restaurants at the 
property level

Introduction
This appendix explains the steps in using quantitative methods for analysing 
and evaluating cost function behaviour patterns to assist in practical routine, 
day-to-day, decision making.

�� Cost behaviour is relevant to managers and management accountants as 
it offers insights into the operating profile of business undertakings and 
in doing so assists in the decision making process. How costs behave are 
the building blocks of cost structure (also called operating leverage) and 
form the basis for determining the business orientation of an enterprise.

�� Kotas (1973) first identified the concept of business orientation. He 
drew attention to business orientation as a function of cost structure, 
introducing the terms cost orientation and market orientation where low 
fixed cost undertakings are product (cost) oriented and high fixed cost 
undertakings are market (revenue) oriented.

�� Managers should recognise the influence cost structure has on the 
orientation of their businesses and engage in understanding how costs 
behave. Knowledge of a property’s business orientation provides an 
important operating perspective in straightforward financial terms and 
guides the approach to strategy formulation (see Chapter 7: Cost structure, 
pp. 104-118).

�� The way direct department and undistributed operating costs behave 
affects routine decision making. Day-to-day decisions relating to 
pricing strategies, competitive bidding, new business development and 
transaction negotiation are all influenced by the way costs react to the 
decisions being considered.

�� As economic conditions change and business strategy adapts, financial 
controllers can help managers understand evolving cost relationships 
and estimate new fixed and variable costs. Whilst managers are acutely 
aware of the costs involved in operating their properties, they are often 
less sure of how the various costs behave in day-to-day decisions.

�� There are useful approaches to determining how costs behave (see 
Chapter 5: Practical cost behaviour for decisions, pp. 68-80), but the emphasis 
here is on quantitative analysis; using pragmatic statistical methods to 
analyse historical costs – learning from the past to predict the future.
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�� Quantitative analysis should never replace other methods of analysing 
costs, but act as a cross check against methods based on judgement 
and experience. All cost analysis methods rely on managers’ working 
knowledge of their own business – this remains crucial to informed cost 
decisions.

Steps for quantitative analysis of cost 
functions (behaviour)
The steps for analysing, estimating and predicting cost functions using 
quantitative techniques of past cost relationships are as follows:   

�� Selecting costs for analysis (dependent variables ‘y’)

�� Identifying cost drivers (independent variables ‘x’)

�� Collecting data on cost items and cost drivers

�� Plotting the data

�� Estimating cost functions

�� Determining the quality of data fit

�� Testing the significance of cost drivers

�� Evaluating cost drivers of estimated cost functions

The steps presented below explain the process and method of quantitative 
analysis of cost behaviour. The data analysis and graphs are prepared with 
the assistance of Microsoft Excel.    

Step 1: Selecting costs for analysis
Clearly, once we begin applying quantitative techniques to analyse cost 
behaviour, it is natural to assume all operating costs should be included 
in the same process. In principle this makes sense, but the early stages of 
developing and applying cost estimation models in practice is a detailed and 
time consuming activity.

In attempting the process of analysing operating costs for the first time in the 
live business situation, it is worth identifying and prioritising the costs to be 
initially analysed; enabling familiarity with the procedures and confidence 
with the overall process.

Consider the following in selecting cost items for initial analysis:       

�� Referring to the profit and loss statement, the three main behavioural cost 
groups are fixed costs, semi-variable costs and variable costs. Of these, 
the semi-variable costs are generally regarded as the most ambiguous 
and challenging cost items to analyse into fixed and variable elements.
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�� Due to the nature of service businesses, semi-variable cost items are 
commonly found to represent a high proportion of operating expenses 
relative to sales revenue; and this is particularly so with costs such as 
payroll and related expenses in the hotel and restaurant sectors.

�� In hospitality properties, semi-variable costs include department direct 
payroll expenses and other direct expenses; and undistributed operating 
expenses that include payroll and other expenses associated with each 
of the main cost (service) centres, including administration and general; 
property and maintenance; and energy and utilities.

As the above points imply, the nature and prominence of semi-variable costs 
tend to highlight their presence as relevant cost items for initial analysis into 
fixed and variable elements. Other expense items are generally perceived as 
being wholly fixed or variable, such as discretionary fixed costs, e.g. marketing 
expenses, and variable costs, e.g. F&B cost of sales. These are examples of 
potential expense items which, in due course, may also warrant analysis in 
order to establish their particular behavioural patterns in specific properties. 

Note: It is not inevitable that all operating expenses should immediately be 
analysed by quantitative techniques. Where well-grounded non-numerical 
methods are used to determine how costs behave, selected expense items 
can be analysed numerically for comparison with the technical (knowledge 
and experience judgements) estimates made by financial controllers and 
managers.                 

Step 2: Identifying cost drivers
A cost driver is a variable, such as the level (occupancy %) or volume (rooms 
let) of business activity, which prompts costs to change over time; in effect, a 
cause-and-effect relationship present between a change in the level of activity 
and a change in the level of a cost. For example, if hotel room guest supplies 
cost change with the number of rooms occupied, the number of rooms 
occupied is a cost driver.

In statistical cost estimation terms, the cost driver represents the independent 
variable signified as ‘x’ and the cost item represents the dependent variable 
signified by ‘y’. In determining cost behaviour x is used to estimate and 
predict y.

Causal relationships
We may sometimes assume that intuitive feelings and strong numerical 
associations between two variables indicate a causal relationship, with 
variations in one causing variations in the other. However, personal intuition 
and high correlations (explained later) between cost drivers and cost 
variations (behaviour) cannot, in themselves, imply causal links between 
variables. Credible assertions of interdependence between costs and cost 
driver variables should be based upon convincing evidence of a plausible 
relationship.    
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Economic plausibility
A cost driver should be economically – and operationally – plausible in 
relation to the cost function being estimated. Horngren et al (2009) suggests 
the cause-and-effect relationship might arise as a result of:

�� A physical relationship between the level of activity and costs. For 
example, where the number of hotel rooms occupied is used as the 
activity measure that affects laundry costs, letting more rooms prompts 
additional laundering, which results in higher total laundry costs.

�� A contractual arrangement. For example, where hotel room servicing is 
outsourced to an external provider at a contracted price per room, only 
the number of rooms serviced affects the total cost incurred.

�� Knowledge of operations. For example, where hotel capacity utilisation 
(occupancy) is used as the measure that affects energy consumption 
costs, the number of guests (sleepers) will normally provide a more 
accurate measure than the number of rooms occupied.            

Note: Unless the relationship between a chosen cost driver and the particular 
cost itself makes economic and/or operational sense managers will not be 
confident to incorporate the variables in their routine, day-to-day, business 
decisions – this point cannot be over-emphasised.

Relevant range
The relevant range is an important assumption that relates to the normal band 
of activity level in which a business operates over a given period and/or where 
individual cost functions are assumed to remain in a constant state (in total or 
per unit of activity).

�� For example, fixed costs such as department manager salaries remain 
constant in total only over a given range of activity (at which the business 
is expected to operate) and only for a given period of time (usually a 
budget period or financial year).

�� Similarly, the relevant range assumption also applies to variable costs. 
Outside the relevant range individual variable costs per unit, such as F&B 
cost of sales may not change in proportion to restaurant sales volume. 
For example, above a given volume of activity cost of sales may increase 
at a lower rate due to bulk discounts received on the larger quantities.

�� With regard to semi-variable costs, such as energy and utilities, the 
relevant range assumption may only affect the variable cost element. 
For example, the standing charge for water service to a property will 
normally represent the fixed cost element and the water charge per 
gallon/litre consumed will represent the variable element; outside the 
water consumption price band (relevant range) the variable cost element 
may increase to a higher rate per gallon/litre. In the case of department 
payroll, a sustained change in the level of business may prompt changes 
in the fixed and/or variable elements of the payroll cost.
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Note: The relevant range assumption provides a useful practical context 
for interpreting the economics concept of marginal analysis in everyday 
management accounting terms. In this context, marginal cost can be explained 
as ‘the average variable cost within the relevant range’.

Step 3: Collecting data on cost items and cost drivers
In order to avoid analytical pitfalls, an important stage in the use of quantitative 
techniques in analysing cost behaviour is the collection and processing of data:

�� Observation time period. Unit of time for observations should enable 
the accounting procedures to match activity and cost; with accounting 
records for accumulating data kept on an accrual basis. Monthly 
observation periods are normally regarded as reasonable for hospitality 
studies and manageable for most management accounting systems, 
though weekly observation periods would facilitate larger samples.

�� Time span of analysis. Number of (monthly) observations in a 
sample should be large enough to be representative of data in terms of 
encompassing a wide range of business variability. The data should be 
as recent as possible and reflect – so far as is possible – a constant state of 
past and future operations (continuity) in terms of products and services 
offered and working practices.

�� Measures of activity. Methods of developing cost drivers should be 
carried out with care in order to identify plausible relationships between 
costs and activities and avoid spurious results. Various measures are 
available, such as business mix, events held, volumes of rooms let and 
covers sold; plus broader capacity measures, including rooms occupied, 
sleeper-nights, headcount, meals/dishes served and labour hours 
worked. 

�� Extreme observation values. Unusual, erroneous and exceptional 
observations may be present in the analysis. These can include numerical 
entry (recording) errors; non-accrual of purchase and expense payments; 
others may be exceptional ‘one-off’ cost items. Each untypical observation 
should be investigated and adjusted or omitted before estimating a cost 
relationship.

�� Inflation. Inflationary price increases should be removed from cost data 
using an appropriate price index on a month by month basis. This is 
important if inflation is severe and/or where the analysis involves a large 
sample (normally regarded as over 30 observations) and data is available 
only monthly, implying the use of a three-year time span.

Step 4: Plotting the data
Let’s take an example of an independent restaurant business. An initial 
attempt is being made to understand the cost behaviour of direct payroll 
expense (relating to the preparation and service of F&B in the restaurant). 
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After an initial discussion,  management believes direct payroll is influenced 
by number of covers sold (cost driver) per month. It is economically plausible 
that number of covers sold would help explain the variations in direct payroll 
costs in the restaurant.

The data presented in Table 1 relate to monthly number of covers sold (cost 
driver) and monthly direct payroll cost of a restaurant property for a one year 
period. This forms the basis to analyse the restaurant payroll cost function 
related to covers sold. 

However, prior to performing a quantitative analysis it is beneficial to obtain 
a visual impression of the data plot on a scatter diagram from Excel, shown in 
Figure 1, in order to:

�� Determine the general relationship which exists between restaurant 
direct payroll cost and number of covers sold variables 

�� Identify any abnormal or extreme observations which may require 
further investigation and subsequent adjustment or omission.

�� Provide an indication of the cost function (behaviour) in terms of 
linearity; and the extent of the relevant range.
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Figure 1: Scatter diagram of restaurant monthly direct payroll cost against number of 
covers sold

The data plot in Figure 1 indicates there are no apparent unusual or extreme 
observations present and that a positive linear trend exists between the 
restaurant payroll cost and covers sold; allowing a linear analysis to be carried 
out. ‘In most analysis, a straight line is adequate because it is a reasonable 
approximation of cost behaviour within the relevant range’ Matz and Usry 
(1980).
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Step 5: Estimating cost functions
A cost function is a quantitative expression of how a cost changes (behaves) 
in relation to changes in levels of activity. Estimating a cost function 
quantitatively is carried out using regression analysis techniques.

Linear regression analysis
Linear regression is a statistical technique for specifying the relationship 
between variables:

�� The technique uses a formal model (equation) to measure the average 
amount of change in a given dependent variable (cost) that is associated 
with changes in one or more independent variables (cost drivers), such 
as rooms occupied, sleeper-nights and covers sold.

�� Where only one independent variable is included in an equation the 
technique is termed simple linear regression analysis. Where two or more 
independent variables are included in the equation the technique is 
known as multiple linear regression analysis.

�� Linear regression analysis uses a sample of past costs to estimate how 
the population of costs behave. The technique used is termed the method 
of least squares which determines the line of best fit for a given set of data.

�� The least-squares line is so called because the sum of the squares of the 
vertical distances (known as residuals) from the regression line to the 
actual data points is less than for any other line.  

The least-squares line is represented by the following equation:
yc = a + bx

where yc = estimated total cost (dependent variable); a = fixed cost (constant); b 
= average variable cost per unit of activity (slope coefficient); and x = the cost 
driver (independent variable e.g. rooms occupied).

The purpose of the analysis is to determine the a and b values of a given 
regression equation; obtained by the simultaneous solution of two normal 
equations:

y = na + b(x)
xy = a(x) + b(x2)

where y = observed values (actual data points); n = number of observations in 
the sample; Σx = sum of the observations of the independent variable(s); Σy = 
sum of the observations of the dependent variable(s); Σx² = sum of the squares 
of the x observations; Σxy = sum of the product of each pair of observations.

Simple linear regression: restaurant illustration
Drawing on the appropriate columns in Table 1, Σx = 178, Σy = 798, Σx2 = 2,902, 
Σxy = 12.492 and n =12, substitution of the data into the two normal equations 
provides the following:
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(1)				      798 =  12a +  b178
(2)				    12,492 = 178a + b2,902
(1) × 14.8333 [178a ÷ 12a	 ]	 11,837 = 178a + b2,640
(2) – (1) 				     655 =   0  +  b262
			   ∴	 b = 655 ÷ 262 = 2.50		   

Note: When calculated in Excel, b = 2.5032 compared to b = 2.50, when calculated 
from Table 1 analysis (differences due to rounding in Table 1 analysis).  
(1)	 798 =  12a +2.5032(178)
	 798 = 12a + 445.5696
      ∴	 a = 352.4304 ÷ 12 = 29,369		

The solution gives a = 29,369 and b = 2.50, but as an aid to computation the two 
normal equations can be expressed as follows:
	  

 a = 
	(y)(x2) – (x)(xy)

		   n(x2) –(x2) 

	  
 b = 

	n(xy) – (x)(y)
		   n(x2) –(x2) 
Table 1: Restaurant monthly covers sold and direct payroll expense data for regres-
sion analysis computations.

Number 
of covers 
sold
000s

Direct 
payroll
expense
£000s 000,000s 000,000s  - 000,000s 000,000s 000,000s

Month x y  x2   xy   yc (y - ȳ)2 (y - yc)
2 (x - x)2

1
2
3
4
5
6
7
8
9
10
11
12

22
7

20
8

19
10
12
19
13
17
15
16

88
56
80
40
84
52
68
64
60
76
56
74

484
 49

400
64

361
100
144
361
169
289
225
256

1,936
392

1,600
320

1,596
520
816

1,216
780

1,292
840

1,184

84,439
46,892
79,433
49,395
76,930
54,401
59,408
76,930
61,911
71,924
66,917
69,420

462.250
110.25
182.25
702.25
306.25
210.25

2.25
6.25

42.25
90.25

110.25
56.25

    12.667
    82.961
     0.321

    88.264 
    49.986
     5.766

    73.829
  167.183          

3.651
    16.617
  119.185        

20.973

51.366
61.356
26.698
46.690
17.364
23.358
  8.026
17.364
  3.360
  4.696
   0.028

1.362

Total   178   798 2,902    12,492 798,000     2,281.00 641.414 261.667

Σx  Σy Σx2  Σxy  Σyc  Σ(y - ȳ )2   Σ(y – yc)
2 Σ(x - x)2

 x = 14,833   ȳ = £66,500
Note: The final values of the results drawn from this table are presented in full in the text. 
The yc column is the predicted value of y for each observed value of x in the regression 
equation yc = 29,369 + 2.50x. For example, for Month 2, yc = 29,369 + 2.50 (7,000) = 46,869 
which agrees closely with the value in the table i.e. 46,869 compared to 46,892 (difference 
due to rounding £2.5032 to £2.50 in the regression equation).
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The illustration data now gives:

	  
 a = 

	(798)(2,902) – (178)(12,492) 
= 29, 369

	
		   (12(2,902) –(31,684) 

	  
 b = 

	 12(12,492) – (178)(178)
   = 2.50

	
		    12(2,902) –(31,684) 

Entering the computed a and b values into the regression equation gives:

		  yc = £29,369 + £2.50x	

signifying the fixed cost element £29,369 and variable cost element £2.50 
per cover sold of restaurant direct payroll cost. Therefore, yc represents the 
estimated average direct payroll cost for any number of covers sold within 
the relevant range, indicated by the regression line in Figure 2. If 15,000 covers 
are sold the estimated direct payroll cost would be £29,369 + £2.50 (15,000) = 
£66,869. Again, £66,869 is close to Month 11= £66,917 in Table 1 (difference due 
to rounding £2.5032 down to £2.50). 

Note: The calculations can be performed on most computer software, such 
as Excel, or alternatively on electronic calculators which contain statistical 
functions; performed by entering the pairs of observations using linear 
regression mode and displaying the totals through the appropriate function 
keys.

 
 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0 5 10 15 20 25 

D
ire

ct
 p

ay
ro

ll 
(£

00
0s

) 

Cost driver: Covers sold (000s) 

Relevant range  

Figure 2: Regression line of best fit for restaurant monthly direct payroll cost and number 
of covers sold  

We have computed a regression analysis which indicates the nature of the 
relationship between restaurant direct payroll cost (y) and number of covers 
sold (x) in the data sample. As illustrated above, the use of linear regression 
allows a line of best fit equation to be computed which may subsequently be 
used to predict the future level of payroll costs.
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Step 6: Determining the quality of data fit 
A major concern with using regression is that an equation can be fitted to any 
sample pairs of observations, regardless of whether there is any measurable 
association or plausible relationship between the variables. Therefore, having 
determined the equation the next step is to access the quality of the data fit, 
known as the goodness of fit, which measures how closely the predicted values 
(yc) based on the cost driver (x) relate to the actual cost observations (y).  

Correlation
Goodness of fit can be measured using correlation analysis techniques. One 
such measure of correlation is the coefficient of determination, denoted by r², 
explained below:

�� The coefficient of determination measures the extent to which the 
dependent variable y (direct payroll cost) is explained by the independent 
variable x (covers sold), indicated in Figure 3.

�� More importantly, r2 indicates in percentage terms how much of the total 
variation of the y values can be attributed (explained) to the relationship 
between the x and y variables and how much can be attributed to chance 
(unexplained), as depicted in Figure 3.
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Figure 3: Measure of cost variation about the regression line of best fit

The coefficient of determination (r²) can be expressed as follows:

	
r2 = 1 –

  (y –yc)2

  = 1 –
 Unexplained variation

		  (y – ȳ)2		  Total variation
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Using the appropriate data from Table 1, (y –yc)2 = 641.414 and (y – ȳ)2 = 2,281.00, 
gives r² which indicates the percentage of the variation in y (dependent 
variable) that can be explained by x (independent variable) which is:

	
r2 = 1 –

   641.414
     =  0.7188  or 72% 

		  2,281.00		  

Thus, it can be stated that 72% of restaurant direct payroll cost is explained by 
number of covers sold and 28% can be attributed to chance variation and the 
effect of other variables not included in the regression equation. Generally, an 
r2 of greater than 0.30 is regarded as acceptable for cost estimation purposes.  

Note: As indicated in Figure 3, the total variation in payroll cost from its 
mean (y – ȳ) can be analysed into two parts. Firstly, the variation between the 
regression line and the mean (yc – ȳ) which is explained by the given value 
of x and secondly, the variation between the payroll cost and the regression 
line (y –yc) which is not explained by x. Also, notice the regression line always 
passes through the mean of the data set.  

The coefficient of determination (r2) is not, perhaps, so well known as the 
coefficient of correlation (r) explained below, but it is far more meaningful 
measure of cost variation. The value of r2 cannot, of course, be greater than 
1 since it cannot explain a greater proportion of total variation than the 
whole; nor can it be less than zero since there cannot be less than no variation 
explained.

The square root of 0.7188 is called the coefficient of correlation (r):

	
r2 = ±     1 –

  (y –yc)2

  =     1 –
 641.414     

=  +0.8478  or  +0.85
		    (y – ȳ)2	     2,281.00	

The range of the coefficient of correlation (r) is from -1 (perfect negative 
correlation) through 0 (no correlation) to +1 (perfect positive correlation). In 
the case of a perfect positive fit, the regression line will pass through every 
observed value of y. In such a case, the sum of the squares of the residuals 
from the regression line to the data points will be zero and r will equal +1.

Note: the coefficient of correlation (r) may give the impression of a higher 
degree of association between an independent variable (x) and dependent 
variable (y) than is applicable. In our example above, 72% of the variance of y 
is explained by x, r2 = 0.7188, but r = ± √0.7188 = +0.8478 or +0.85. This occurs 
because r is a relative measure of the relationship between two variables, 
whereas r2 indicates the proportion of the total variance  that is explained by 
the independent variable x (cost driver).

Cause-and-effect

As referred to earlier in the cost drivers section, we often assume that high 
correlations between two variables indicate a causal relationship. Correlation 
analysis measures the numerical strength of association between pairs of data 
and does not, in itself, imply any causal link between the data (variables). 
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Remember, in order to assert an interdependent (mutual) relationship 
between two variables there should be convincing evidence of economic and/
or operational plausibility.      

Standard error of the estimate
Having ascertained the degree of association between the x and y variables 
the next step is to assess how accurate the regression line is as a basis for 
prediction. The accuracy, goodness of fit, of the equation line can be measured 
by the standard error of the estimate (Se), explained below:

�� The purpose of the standard error of estimate is to measure how closely 
the predicted costs (yc) can be expected to match to the actual costs (y).

�� The standard error of the estimate measures the unexplained variation 
determined by the regression equation line of best fit, as indicated in 
Figure 3.

The smaller the standard error of the estimate, the better the regression line 
fits the data. The standard error of the estimate for a population is estimated 
from a sample of past costs as follows:

	
Se =     

     (y –yc)2

      =  
   (y –yc)2

 
    

		  Degrees of freedom	   n – 2    

where n is the sample size. The denominator, n-2 is called the degrees of freedom. 
Compared with the coefficient of correlation which is a relative measure, the 
standard error of estimate provides an absolute (numerical) measure, in the 
case of payroll cost representing £s sterling, as illustrated below

Note: One degree of freedom is lost for each value that has been calculated in 
the regression equation. In our restaurant illustration, the intercept a together 
with one slope coefficient b were estimated to establish the regression line, 
therefore, two degrees of freedom are lost.

Using the data in Table 1 the standard error of the estimate is:

	
Se =     

  641.414
   =  8.009 or £8,009 

    
		   12 – 2	       
If the assumptions which underlie linear regression analysis are satisfied 
(linearity, normality, constant variance and independence of residuals - explained 
later), then the standard error of the estimate indicates the range of values of 
the dependent variable (payroll cost) within which there can be some degree 
of confidence that the true value lies. For example, if 15,000 covers are sold 
then the predicted payroll cost will be as follows:

	 yc = £29,369 + £2.50 (15,000)
	   = £66,869
With the standard error of the estimate, also sometimes referred to as the 
range of probable error, of £8,009:
		  Se = £66,869 ±  £8,009 (1.0)
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As approximately two thirds of the data points in a normal distribution should 
fall within one standard error, it is possible to predict that 15,000 covers sold 
should incur an actual direct payroll cost of between £58,860 and £74,878 
with approximately two chances out of three that the confidence interval will 
contain the true cost; due to 68% (approximately two-thirds) of the data points 
in a normal distribution fall within a range of ± one standard error.

Statistical theory suggests that for linear regression analysis the data points 
are t-distributed around the regression line and that the distribution becomes 
normal as the number of observations reaches thirty. In sampling terms, 30 
or more observations are categorised as a large sample. The t-distribution is 
presented in the form of a table in Table 2.
Table 2: t-distribution table

d f t.100 t.050 t.025 t.010 t.005

 1………………………….. 3.078 6.314 12.706 31.821    63.657
 2………………………….. 1.886 2.920 4.303 6.965 9.925
 3………………………….. 1.638 2.353 3.182 4.541 5.841
 4………………………….. 1.533 2.132 2.776 3.747 4.604
 5………………………….. 1.476 2.015 2.571 3.365 4.032

 6………………………….. 1.440 1.943 2.447 3.143 3.707
 7………………………….. 1.415 1.895 2.365 2.998 3.499
 8………………………….. 1.397 1.860 2.306 2.896 3.355
 9………………………….. 1.383 1.833 2.262 2.821 3.250
10…………………………. 1.372 1.812 2.228 2.764 3.196

11…………………………. 1.363 1.796 2.201 2.718 3.106
12…………………………. 1.356 1.782 2.179 2.681 3.055
13…………………………. 1.350 1.771 2.160 2.650 3.012
14…………………………. 1.345 1.761 2.145 2.624 2.977
15…………………………. 1.341 1.753 2.131 2.602 2.947

16…………………………. 1.337 1.746 2.120 2.583 2.921
17…………………………. 1.333 1.740 2.110 2.567 2.898
18…………………………. 1.330 1.734 2.101 2.552 2.878
19…………………………. 1.328 1.729 2.093 2.539 2.861
20…………………………. 1.325 1.725 2.086 2.528 2.845

21…………………………. 1.323 1.721 2.080 2.518 2.831
22…………………………. 1.321 1.717 2.074 2.508 2.819
23…………………………. 1.319 1.714 2.069 2.500 2.807
24…………………………. 1.318 1.711 2.064 2.492 2.797
25…………………………. 1.316 1.708 2.060 2.485 2.787

26…………………………. 1.315 1.706 2.056 2.479 2.779
27…………………………. 1.314 1.703 2.052 2.473 2.771
28…………………………. 1.313 1.701 2.048 2.467 2.763
29…………………………. 1.311 1.699 2.045 2.462 2.756
Inf………………………… 1.282 1.645 1.960 2.326 2.576

The t-value describes the sampling distribution of a deviation from a population value divided 
by the standard error. Probabilities indicated in the subordinate of t in the headings refer to 
the sum of the two-tailed areas under the curve that lie outside the points ± t degrees of free-
dom are listed in the first column (df). For example, in the distribution of means in the sample 
size n = 12, df = n-2 = 12-2 = 10, then .05 of the area under the curve falls in the two tails of the 
curve outside the interval t ± 2.228, which is taken from the t.025 column of the table. 
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If, for example, the above restaurant direct payroll cost estimate specified a 
95% confidence interval, the range of error would be:	

		  Se = £66,869 ±  £8,009 (2.228)
		    = £66,869 ±  £17,844
Thus, it is possible to predict that 15,000 covers sold should attract a direct 
payroll cost of between £49,025 and £84,713, with 95 chances out of 100 (19 out 
of 20) the confidence interval will contain the actual cost.

Note: The 2.228 standard errors, representing the 95% confidence interval is 
obtained by referring to the t-table in Table 2. The illustration sample size is n 
= 12, degrees of freedom (df) = n - 2 = 10. Therefore, for a two-tailed t-test with 
10 degrees of freedom, 5% of the area under a normal distribution curve falls 
in the two-tails of the curve outside the interval t ± 2.228, taken from the t.025 
column of the table. 

The standard error of the estimate at the 68% confidence interval (1Se) and 
at the 95% confidence interval (2.228 Se) for a small sample is illustrated in 
Figure 4.

In principle, the standard error of the estimate is similar to the standard 
deviation in normal probability analysis, the difference being that whereas 
the standard deviation measures the dispersion of data points around the 
mean, the standard error of the estimate measures the variability around the 
regression line.
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Figure 4: Regression line showing standard errors of estimate
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Standard error of a prediction
As mentioned earlier, one of the reasons for engaging in cost analysis is to 
provide a basis for cost and profit projections. The standard error of estimate 
measures how closely predicted costs can be expected to match the actual 
costs in the same sample.

However, where an equation is employed to predict costs for a future period 
– thus using data not incorporated in the initial equation – then it becomes 
necessary to introduce a correction factor to the standard error of the estimate. 
This arises because with repeated sampling the estimated value of y will vary:

�� The standard error of a predication (Sp) consists of the standard error of 
estimate with a correction factor in respect of each prediction. 

�� Remember, the estimated value of y for any given value of x is yc. With 
each new sample the estimates of the intercept and slope coefficient will 
very to some extent. Hence, each sample will produce a slightly different 
regression line and, thus, a different yc value for a given value of x.

The standard error of a prediction (is computed as follows:

	
Sp = Se     1 +  

 1  
 +  

(xp –x)2

  
 

		        n        (x –x)2    
where xp indicates the value of the new prediction (observation). Hence, the 
standard error of the estimate obtained from historical data is multiplied be the 
correction factor. The standard error of prediction is minimised when xp = x. 
This occurs because the regression line must always go through the mean point 
of the data.

Knowledge of the height of the line is most certain at the mean. Therefore, as 
observation values move further from the mean small changes in the slope of 
the line will cause increasing uncertainty as to the height of the line.

The result of this is the confidence interval band is not parallel to the regression 
line and so reflects a greater risk, and thus a wider interval, at the extremes of 
the range. Therefore, the further the covers sold prediction is from the mean 
of future covers sold, the wider the prediction interval will become, illustrated 
in Figure 5.

16 Profit Planning
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Figure 5: Confidence interval of a prediction
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If 15,000 covers are predicted in a future period, and a 95% confidence interval 
is specified, then the standard error of the prediction will be:

	
Sp = Se     1 +  

 1  
 +  

(15,000 – 14,833)2

  
 

		        12          261.667
	    =  8.009  √ 1.0834339915
	    =  8.009 × 1.0408841987
	    =  8.336 or £8,336

	 ∴ yc = 366,869 ± (£8,336) (2.228)
	    = £66,869  ± £18,573
It is, therefore, 95% certain that if 15,000 covers are sold, the actual payroll cost 
will be between £48,296 and £85,442.

Note: The higher standard error of the prediction of £18,573 compared to the 
standard error of the estimate of £17,844 is due to including the correction 
factor for a regression equation computed from a sample taken in one period 
to predict costs in a future period where the sample mean is not known.   

Standard error of the variable cost coefficient (b)
In addition to determining the accuracy of total cost estimates and predictions, 
it is important to assess the reliability of the b coefficient (variable cost). The 
standard error of the regression coefficient (Sb) is computed as follows:

	  Sb  =     
 Se  

 
		  √ (x –x)2	      
Using the illustration data gives:

	  Sb  =     
 8.009  

  = 0.50 or £0.50
		  √ 261.667	       
If a 95% confidence interval is specified the range of probable error for the 
variable payroll cost b will be:
	   Sb  = £2.50 ± (£0.50) (2.228)
	       = £2.50 ± £1.11
Therefore, there are approximately 95 chances out of 100 (19 out of 20) the true 
variable cost element of the restaurant direct payroll expense lies within the 
range £1.39 to £3.61.

Note: The standard error of 2.228 was obtained from the t-table critical values 
in Table 2 by referring to degrees of freedom row 10 under column t.025.

Step 7: Testing the significance of cost drivers
We have computed a regression and correlation analysis which indicates 
the nature of the relationship between restaurant direct payroll costs (y) and 
number of covers sold (x), the cost driver. In this case, the results are obtained 
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from a small sample of 12 observations. However, the question arises as to 
whether the results obtained from the data are significant. Do changes in the 
cost driver result in statically significant changes in the cost function? 

Significance test for the variable cost coefficient (b)
Having computed the standard error of the regression coefficient, b, it is 
possible to test if a significant explanatory relationship exists between the y 
and x variables. In our restaurant example, the b coefficient suggests a £2.50 
change in the average variable cost of direct payroll cost for each additional 
cover sold.

�� The b coefficient of £2.50 is an estimate of the true variable payroll cost for 
the population ‘B’, but a particular sample may indicate a relationship 
by chance, even though none exists.

�� If there is no relationship between y and x the true slope of the regression 
line will be zero; in other words b will be zero and restaurant payroll cost 
will be regarded as a fixed cost.

The relationship between the x and y variables can be tested by using the null 
hypothesis (H0) and the alternative hypothesis (H1). If we assume the restaurant 
sample has been drawn from a population with a zero b coefficient, then:

	 H0 : B = 0 (no relationship)

	 H1 : B ≠  0 (direct payroll cost varies with covers sold)

To test the hypothesis it is necessary to compute how many standard errors 
the sample b is away from the population B, and compare the computed 
t-value with the t-table critical value. Under the null hypothesis (H0), which 
assumes b = 0 (no relationship) the computed t-value is:
	 t-value = b – 0 = £2.50 – 0 = 5.0
		      Sb	  £0.50
Therefore, b is determined to be 5 standard errors from zero. If a 95% 
confidence interval is specified then reference to the t-table for a two-tailed 
test indicates a critical value of 2.228. Thus, as a deviation of above 2 standard 
errors is usually regarded as significant, it is unlikely that a deviation as large 
as 5 standard errors could occur by chance.

At the 95% confidence level there are only 5 chances out of 100 (1 in 20) that 
a sample indicates a significant relationship where none exists. Thus, in this 
case, the null hypothesis H0 can be rejected and the alternative hypothesis 
H1 is accepted i.e. that a highly significant relationship does exist between 
restaurant payroll cost and covers sold (assuming the specification analysis 
assumptions mentioned later hold).

Significance test for the correlation coefficient (r)
Having computed the coefficient of correlation r it is possible to test if there is a 
significant numerical relationship between x and y variables. In our restaurant 
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example, r = 0.8478 (or 0.85) suggesting 71.88% (or 72%) of direct payroll cost 
behaviour is explained by covers sold.

The relationship between the x and y variables can also be tested by using 
the ‘null hypothesis’ (Ho) and the alternative hypothesis (H1) expressed as 
follows:

 	 H0 : r = 0 (no relationship)

	 H1 : r ≠  0 (direct payroll cost varies with covers sold)

To test the hypothesis it is necessary to compute how many standard errors 
r is away from B, and compare the computed t-value with the t-table critical 
value. Under the null hypothesis (H0), which assumes r = 0 (no relationship) 
the computed t-value is:

         	
Sr =  

 1 – r2  
  =   

1 – 0.7188
 
 
 =  √0.02812  = 0.1677 

 
	     n – 2        12 – 2        

	
t-value   =    

 r  
  =   

 0.8478 – 0
 
 
 =  5.0 

 
	            Sr        0.1677       
Therefore, r is determined to be 5 standard errors from zero. If a 95% 
confidence interval is specified then reference to the t-table for a two-tailed 
test indicates a critical value of 2.228. Thus, as a deviation of above 2 standard 
errors is usually regarded as significant, it is unlikely that a deviation as large 
as 5 standard errors could occur by chance.

Again, at the 95% confidence level there are only 5 chances out of 100 (1 in 20) 
that a significant relationship is indicated where none exists. Thus, the null 
hypothesis H0 can be be rejected and the alternative hypothesis H1 is accepted 
(assuming the assumptions mentioned later hold).

Note: The sign attached to r is the sign of b in the regression equation  
Therefore, the result and interpretation of the significance test for r is similar 
to that of the b coefficient, highly significant. However, testing r is included 
here as correlation analysis is a useful technique to apply in the search for 
suitable cost drivers of cost functions.  

Step 8: Evaluating cost drivers of estimated cost 
functions 
Once the sample data is processed the final step is to evaluate the cost driver 
of the estimated cost function as a predictor of future costs. So, the question 
arises as to how managers and management accountants assess cost drivers 
of cost functions?  

Cost driver: restaurant illustration 
There are four key selection criteria that can be used to evaluate cost drivers 
of cost functions derived from regression analysis and these are explained 
below:
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♦	 Criterion 1: Plausibility. The positive physical relationship between 
monthly number of covers sold and restaurant direct payroll cost is economically 
and operationally plausible; producing and selling more meals requires 
more restaurant labour, which results in higher total direct payroll costs.

♦	 Criterion 2: Goodness of fit. A cost driver should explain a considerable 
amount of the variation in a cost function. The coefficient of determination 
(r2) is a particularly useful indicator of the goodness of fit as it measures 
the percentage variation in the cost function explained by the cost driver; 
in this case 72% of direct payroll cost is explained by number of covers sold. 
Since an r2 of greater than 0.30 is usually regarded as acceptable an r2 = 0.72 
indicates a strong relationship between the variables.

♦	 Criterion 3: Significance of the independent variable. The t-value of a 
variable cost coefficient (b) measures the significance of the relationship 
between the changes in the cost function and the changes in the cost driver; 
in this case b = 5.0 standard errors from zero at the 95% confidence interval. 
Generally, if there are 30 or more observations in a sample and the t-value is 
greater than 2.0 at the 95% confidence interval, then a variable cost element 
can assume to be present in the cost population (B) as a whole. It is unlikely 
for a deviation as large as 5.0 standard errors could occur by chance. 

♦	 Criterion 4: Specification analysis. There are underlying assumptions of 
regression analysis – referred to in earlier sections – required to be satisfied 
in order to make valid estimates and predictions from sample data about 
population relationships, and these are as follows:

v	 Linearity. This can be identified visually from a scatter diagram and 
should reflect a general linear (straight line) trend in the data. Figure 
1 reveals that linearity is a likely reasonable assumption in the case 
of the restaurant direct payroll cost and number of covers sold data.

v	 Constant variance. The standard errors and variance of the residuals 
should be constant for all values of x, which means there is a uniform 
dispersion of points about the regression line, as shown in Figure 6 
(Diagram 1). Where this is not so, as shown in Figure 6 (Diagram 2) 
the reliability of the slope coefficient (b) is reduced; not affecting the 
accuracy of the equation estimates, but affecting the reliability of 
standard error estimates. Figure 2 reveals the restaurant data has a 
constant variance.  

v	 Normality. Distribution of data points about the regression line 
should approximately follow a normal curve, i.e. the residuals are 
normally distributed, as appears to be the case with the restaurant 
data in Figure 4. However, this is difficult to determine with small 
samples of data.

v	 Independence. Residual values should be independent of one 
another. This means the deviation of one data point about the 
regression line should be unrelated to the deviation of any other 
data point. Where this is not so then serial correlation is said to 
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be present. One measure used to determine the presence serial 
correlation in sample data is the Durban-Watson statistic which 
is incorporated in many computer programmes. However, this 
condition can be checked on a scientific calculator by computing the 
coefficient of correlation (r) or coefficient of determination (r2) of the 
cost residuals which, in the case of the restaurant data is r = 0.39 (r2 
= 0.15).
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Figure 6: Examples of constant and non-constant variance of residuals

In cases where linearity, constant variance, normality and independence 
assumptions are satisfied the regression coefficients and standard errors 
determined from a sample can be regarded as efficient, linear and unbiased 
estimates of the true population values.
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Conclusion
A summary of the above restaurant evaluation of the cost driver number of 
covers sold is presented in Table 3. The findings indicate the restaurant data 
sample generally satisfies the selection criteria. In hotel restaurants, and 
indeed stand-alone restaurants, direct payroll cost is commonly considered 
to change with number of covers sold and, therefore, represents a plausible 
operational relationship. This is supported by the data with a strong coefficient 
of determination and significant t-value. 

Table 3:  Restaurant cost driver: number of covers sold evaluation summary

Criteria

1. Plausibility Positive relationship between direct payroll and covers sold 
makes economic and operational sense.

2. Goodness of fit r2 = 0.72 indicates a strong degree of association between the 
variables.

3. Significance of the 
  independent variable

t-value = 5.0 indicates a significant relationship at the 95% confi-
dence interval; and the 99% confidence interval.

4. Specification analysis

    Linearity There appears to be a clear linear trend present in the data plot.

    Constant variance This appears to be satisfied, but is based on only 12 observations.

    Normality Difficult to draw conclusions from 12 observations.

    Independence r = 0.39 indicates the assumption of independence is reasonable 
in the regression equation.

Note: In the case of the restaurant illustration the convincing results need 
to be weighed against the small size of the data sample (less than 30 pairs 
of observations). A balance must be struck between collecting representative 
data samples from periods where the operating situation may have been 
different to current working practices and economic conditions.

Fixed cost element
Explanation has centred on testing and evaluating the variable cost coefficient, 
but it is important from a practical standpoint to understand the role of the 
fixed cost element in cost analysis. A business undertaking tends to operate 
within a particular band of activity (relevant range) and, therefore, it is 
inappropriate and often dangerous to make estimates beyond the range of the 
observed data.

In his seminal article, Benston (1966) pointed out that it is tempting to interpret 
the constant term, a, as a fixed cost by extending the regression line back to 
zero activity. This presupposes a linear relationship which, as indicated by 
Figure 7, may not be a valid assumption.

In the case of our restaurant illustration, the regression line was fitted from 
the equation, where the data points are the observed values of the cost 
and activity. The line provides an estimate of the fixed cost if the range of 
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observation included the point where activity is zero. However, if additional 
cost and activity observations were available they might show that the broken 
curve fitted with the fixed cost a, itself, being zero at zero activity. 
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Figure 7: Restaurant fixed cost and the relevant range, adapted from Benston (1966)

It, therefore, becomes apparent that a is not the cost that would necessarily be 
found if the level of activity was at zero, but simply the value that is obtained 
as a result of the regression line computed from the available data. This helps 
to explain why the t-value of the fixed cost element has not been computed for 
our restaurant illustration. Since the key objective is to estimate and predict 
how costs behave as activity levels change over the relevant range, which is 
usually not at zero activity, the t-value of a is not normally relevant.

Simple linear regression: hotel illustration
So far, we have explained the step-by-step process and method of quantitative 
analysis using regression techniques with an independent restaurant business 
direct payroll expense.

Now, with knowledge of the process, we can consider how to analyse cost 
functions (behaviour) routinely on a day-to-day basis. Let’s take an example 
from hotel indirect expenses (overhead) by illustrating an undistributed 
operating expense, such as utility costs.

An attempt is being made to understand the cost behaviour of hotel utility 
costs, arising from energy and water consumption. After an initial assessment 
management believes that utility costs are primarily influenced by the 
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level of room occupancy in terms of number of rooms occupied (cost driver). 
It is economically plausible that number of rooms occupied would assist in 
explaining the variations in utility costs in the hotel. Data from a hotel’s utility 
costs and rooms occupied for a one year period is presented in Table 4.

Table 4: Hotel monthly rooms occupied and utility costs

Month No. of rooms occupied Utility cost  £

1 1,220 20,350

2 1,665 23,243

3 2,435 24,550
4 4,746 27,114
5 4,497 23,732

6 5,629 25,879

7 5,110 25,200

8 6,024 27,860

9 3,346 26,105

10 4,100 27,283

11 5,768 30,047

12 2,910 22,945
Total   47,450          304,308

The summary simple linear regression analysis of monthly utility costs 
against number of rooms occupied can be plotted on a scatter diagram from 
Excel; including the regression equation and the coefficient of determination 
(r2) displayed on the chart, presented in Figure 8. 
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Figure 8: Simple linear regression of monthly utility costs v. number of rooms occupied
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The coefficient of determination (r2) in Figure 8, denoted as R Square in Excel 
format, indicates 62% of utility cost variation (behaviour) is explained by 
number of rooms occupied.

In addition to the results in Figure 8, a summary of the key results of the 
analysis, including the quality of data fit and the significance of the cost 
driver, from Excel data analysis, is presented in Table 5.

Table 5:  Summary simple regression results for monthly utility costs against one 
independent variable (cost driver): number of rooms occupied.

Regression Statistics: Coefficients Standard Error t-Statistic

Multiple R 0.79

R Square 0.62

Standard Error 3,031

Intercept 16,279 2,388 6.82

Rooms occupied 2.27 0.56 4.05

Referring to Table 5, an interpretation of Excel results for the simple linear 
regression analysis of rooms occupied and utility costs indicates the following:

�� The r2 of 0.62 for the simple linear regression.

�� The t-values (statistic) of the independent variable coefficient (cost 
driver) number of rooms occupied (£2.27) is:

	 t value = b – 0 = £2.27 – 0 = 4.05
		      Sb       £0.56

�� which is significantly different from zero at the 95% confidence interval 
with (10 degrees of freedom) as it is above the critical 2.228 value, 
indicated in Table 2.

�� As explained earlier, under the fixed cost element section, the intercept 
t-value (in this case 6.82) is not relevant to the evaluation of results as 
this simply represents the value obtained from computing the regression 
equation from the available data (relevant range) and is not necessarily 
the fixed cost when the level of activity is zero.

Note: In Table 5, Multiple R, as denoted in Excel, facilitates the use of multiple 
independent variables (cost drivers) are used in an analysis (explained in the 
following section). As only one cost driver (number of rooms occupied) is 
included to analyse utility costs, the r = 0.79 here simply reflects the results 
using one cost driver, giving r2 = 0.62. 

Note: Utility consumption costs are likely to be more closely related to the 
number of guests staying in a hotel rather than the number of rooms occupied. 
Therefore, whilst the number of rooms occupied cost driver produced a strong 
r2, it is possible that a more refined cost driver, such as number of guests/
sleeper-nights, could provide a higher r2.           



254	 Profit Planning

Conclusion
A summary of the hotel utility costs the cost driver number of rooms occupied 
is presented in Table 6. The findings indicate the room occupancy and utility 
costs data sample generally satisfies the selection criteria. In the nature of 
hotel operations, utility costs are influenced by room occupancy, therefore, 
representing a plausible operational relationship. This is supported by the 
data with a strong coefficient of determination and significant t-value.

Table 6: Hotel cost driver: number of rooms occupied evaluation summary

Criteria:

1. Plausibility Positive relationship between rooms occupied against utility 
costs makes economic and operational sense.

2. Goodness of fit r2 = 0.62 indicates a strong degree of association between the 
variables.

3. Significance of the 
  independent variable

t-values = 4.05 indicates a significant relationship at the 95% 
confidence interval.

4. Specification analysis

    Linearity There appears to be a linear trend present in the data plot.

    Constant variance This appears to be satisfied, but based on only 12 observations

    Normality Difficult to draw conclusions from 12 observations.

    Independence r = 0.45 indicates the assumption of independence holds in 
the regression equation.

As the hotel example indicates, once the process and method of regression 
analysis is familiar, the estimating equations, quality of data fit and 
significance tests can be carried out rapidly with the assistance of software 
programmes, such as Excel. However, the relevance and quality of the cost 
function (behaviour) information produced rests on two important elements:

�� Managers’ knowledge of the operating characteristics their own 
properties when selecting costs and cost drivers for analysis.

�� The reliability of the routine accounting and recording systems 
generating the costs and cost driver data sets to be incorporated in the 
analysis.          

Note: In the hotel illustration, the convincing results need to be weighed 
against the small size of the data sample (less than 30 pairs of observations). A 
balance must be struck between collecting representative data samples from 
periods where the operating situation in the past may have been different to 
current working practices and economic conditions.
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Multiple linear regression analysis
Our restaurant payroll and hotel utility cost examples illustrate the approach 
to determining cost behaviour using simple linear regression analysis. In these 
instances, satisfactory estimation of the payroll and utility cost functions were 
achieved using single independent variables (cost drivers), number of covers 
sold and number of rooms occupied. However, in some cases, developing a cost 
estimation equation with more than one independent variable (using multiple 
cost drivers) can enhance plausibility and improve data fit.

Multiple linear regression, which is an extension of simple linear regression, 
provides the means to measure the joint effect of two or more independent 
variables upon a dependent variable. The equation to express the relationships 
between multiple independent variables is as follows:

 	 yc = a + b1 x1 + b2 x2 + ...  bn xn

where, yc  = estimated total cost (dependent variable); a = fixed cost (constant);  
b1b2 = average variable cost per unit of activity (slope coefficients); and  x1x2= 
the cost drivers (independent variables e.g. rooms occupied, covers sold):

�� In a multiple regression analysis with two independent variables, the 
regression line takes the form of a plane which is fitted using a modified 
version of the equation of a straight line.

�� The  terms b1 and b2 are net regression coefficients and each one measures 
the net change in the particular independent variable.

�� Since it is the simultaneous influence of all variables on y which is being 
measured, the net effect of x1, or any other x, must be determined apart 
from any influence of other variables

�� For example, b1 measures the change yc in per unit of change in x1 whilst 
holding other independent variables constant; similar in principle to 
the calculation of flexible budget variances where, for instance, prices 
and costs are held constant in order to measure the effect on profit of a 
change in the volume of products or services sold.

Let’s consider the example of a hotel business which operates food & beverage 
services, including a banqueting department offering a range of banquet 
events; where each event forms a discrete, one off, occurrence.

A first attempt is being made to understand the cost behaviour of direct 
payroll expense in the banqueting department. After an initial assessment 
management considers that, in addition to number of labour hours worked 
(cost driver), department payroll is also affected by number of banquet events 
(cost driver) per month. It is economically plausible that number of banquet 
labour hours worked and number of banquet events held would help explain 
the variations in banqueting payroll costs in the hotel. Data for the hotel 
banqueting department example for a one year period is presented in Table 7.
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Table 7: Banqueting monthly number of events, number of labour hours worked and direct 
payroll expense

Month Events Labour hours worked Payroll costs £

1 11 2,040 22,560
2 15 1,380 21,300
3 26 1,960 30,620
4 32 2,700 36,330
5 25 2,880 43,570
6 21 2,160 27,510
7 23 2,040 35,700
8 20 1,850 23,100
9 24 2,800 30,960
10 28 2,460 38,340
11 34 2,240 35,400
12 29 1,440 28,890
Total 288 25,950 374,280

However, before carrying out a multiple linear regression on the hotel 
banqueting department payroll data in Table 5, let’s first prepare a simple 
linear regression analysis so we can subsequently compare and assess the 
multiple regression results.

Simple linear regression: banqueting illustration
The summary simple linear regression analysis of monthly payroll cost 
against number of labour hours worked and number of banquet events are 
presented in Figure 9 and Figure 10 respectively. 
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Figure 9: Simple linear regression results of monthly banqueting payroll costs against 
number of banquet labour hours worked
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The coefficient of determination (r2) in Figure 9, denoted as R Square in Excel, 
indicates 51% of banqueting payroll cost variation (behaviour) is explained by 
the number of banquet labour hours worked. 
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Figure 10: Simple linear regression results of monthly banqueting payroll costs against 
number of banquet events

The coefficient of determination in Figure 10, indicates 48% of banqueting 
payroll cost variation (behaviour) is explained by the number of banquet 
events.

Note: Remember, simple linear regression measures the average amount of 
change in a given dependent variable (cost) that is associated with changes 
in one independent variable (cost driver), such as in this case banquet payroll 
against labour hours worked and banquet payroll against banquet events .

Multiple linear regression: banqueting illustration
Estimates of the relationship between number of banquet events and number 
of banquet labour hours worked per month against banqueting department 
payroll expense can be carried out in Excel using multiple regression analysis 
to give the following equation:

	 yc = £2,305 + £7.57 x1 + £521 x2

where x1 is number of banquet labour hours worked and x2 is number of 
banquet events; signifying the fixed cost element £2,305 plus variable 
cost elements £7.57 per labour hour worked and £521 per banquet held of 
banqueting total payroll cost. The key results of the analysis, including the 
quality of data fit and the significance of the cost drivers are presented in 
Table 8.
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Table 8: Summary multiple regression results for monthly banqueting department payroll 
expense against two independent variables (cost drivers): number of banquet labour hours 
worked; and number of banquet events.

Regression Statistics: Coefficients Standard Error t-Statistic

Multiple R 0.85

R Square 0.73
Adjusted R Square 0.67

Standard Error 3,969

Intercept 2,305 6,009 0.38
Banquet labour hours worked 7.57 2.64 2.87

Banquet events 521.35 193.84 2.70

Referring to Table 8, an interpretation of Excel results for the multiple linear 
regression analysis of banquet labour hours worked, banquet events and 
banqueting department payroll cost indicates the following:

�� The r2 of 0.51 for the simple linear regression using number of labour 
hours worked (Figure 9) increases to 0.73 with the multiple linear 
regression.

�� Adding additional independent variables always improves r2, but at 
the same time reduces the degrees of freedom in the data. In this case, 
by adding number of banquet events to the equation, the increase in 
adjusted r2 appreciably outweighs the degree of freedom lost.    

�� The standard error of estimate (Se) of the multiple regression equation 
that includes number of labour hours worked and number of banquet 
events as an independent variable (cost driver) is:

      	
Se =    

 (y – yc)2  
    =   

141,768,160.2
 
 
 = £3,969 

 

	        n – 3        	    9        
	 which is correspondingly lower than the standard error of the simple 

regression equation, with only labour hours worked as the independent 
variable (cost driver) is £5,063 (computation not shown).

�� The t-values (statistic) of the independent variable coefficients (cost 
drivers) of both number labour hours worked (£7.57) and number of 
banquet events (£521.35) which are respectively:

	 t value =  b – 0  =  £7.57 – 0   =  2.87
		       Sb          £2.64

	 t value =  b – 0  =   £521.35 – 0  = 2.70
		       Sb           £193.84

	 are significantly different from zero at the 95% confidence interval with 
(9 degrees of freedom) as they are both above the critical 2.26 value, 
indicated in Table 2.
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�� Again, as explained earlier, under the fixed cost element section, the 
intercept t-value (in this case (0.38) is not relevant to the evaluation of 
results as this simply represents the value obtained  from computing the 
regression equation from the available data (relevant range) and is not 
necessarily the fixed cost when the level of activity is zero.

Multicollinearity  
An important constraint of applying multiple regression equations is the 
presence of multicollinearity. Where multicollinearity is present in an equation, 
the independent variables are highly correlated with one another and their 
individual relationships with the dependent variable cannot be accurately 
determined; from an operating perspective, making it impossible to separate 
individual coefficients (marginal costs) of cost drivers. 

Managers will normally prefer to determine the marginal costs of each type or 
group of products or services, but this depends on the relationship between 
the independent variables. For example, take the case of a full-service hotel 
comprising accommodation, restaurant and bar departments where the 
analysis of undistributed operating expenses is being undertaken. If demand 
for the departments is highly correlated the volume of rooms, covers and 
drinks will vary together and make it impossible to disaggregate the marginal 
costs of letting rooms from the costs of producing meals or serving drinks.

However, where the correlation between the independent variables continues, 
the regression equation can provide accurate predictions of total undistributed 
operating costs of the full-service hotel for e.g. flexible budget preparation.

Referring to our hotel banqueting department example, the presence of 
multicollinearity can be tested by determining the coefficient of correlation (r) 
between the two independent variables, number of labour hours worked and 
number of banquet events, and presented in Figure 11.

A coefficient of correlation greater than 0.70 between independent variables 
in a multiple regression equation is usually considered indicative of 
multicollinearity. Therefore, the significantly lower r = 0.3645 obtained in Figure 
10 suggests the analysis is unlikely to contain problems of multicollinearity, 
reflected in the coefficient of determination r2 = 0.1329, indicating that only 
13% of number of banquet labour hours worked is explained by number of 
banquet events.

Reviewing the scatter diagram of Figure 11 with Figures 9 and 10 visually 
contrasts the low degree of correlation between banquet labour hours worked 
and banquet events, compared to the high correlation between banqueting 
payroll cost and labour hours worked, and banqueting payroll cost and 
banquet events; emphasizing the absence of multicollineraity in labour hours 
worked and banquet events.
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Figure 11: Correlation results of monthly banquet labour hours worked against number of 
banquet events

Conclusion
A summary of the above hotel banqueting department evaluation of the cost 
drivers number of banquet labour hours worked and number of banquet events 
is presented in Table 9. The findings indicate the banqueting data sample 
generally satisfies the selection criteria. In the nature of banqueting operations, 
direct payroll cost is influenced by the type of occasion (e.g. cocktail party, 
wedding or dinner) level of service (e.g. formal sit-down meal or buffet 
style), size (number of covers) and quality (e.g. style of menu supplementary 
requirements) affecting the labour hours worked for the F&B production 
and service and setup and changeover of events, therefore, representing a 
plausible operational relationship. This is supported by the data with a strong 
coefficient of determination and significant t-value. 

Note: In the banqueting department illustration, the convincing results need 
to be weighed against the small size of the data sample (less than 30 pairs 
of observations). A balance must be struck between collecting representative 
data samples from periods where the operating situation in the past may have 
been different to current working practices and economic conditions.
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Table 9: Banqueting department cost drivers: number of banquet labours hours worked 
and number of banquet events evaluation summary

Criteria:

1. Plausibility Positive relationship between banquet labour hours worked 
and banquet events against banqueting payroll cost makes 
economic and operational sense.

2. Goodness of fit r2 = 0.73 indicates a strong degree of association between the 
variables.

3. Significance of the 
  independent variable

t-values = 2.87 labour hours worked and 2.70 events indicates 
a significant relationship at the 95% confidence interval.

4. Specification analysis

    Linearity There appears to be a linear trend present in the data plot.

    Constant variance This appears to be satisfied, but based on only 12 observations

    Normality Difficult to draw conclusions from 12 observations.

    Independence r = 0.02 indicates the assumption of independence holds in 
the regression equation.

    Multicollinearity r = 0.36 suggests the analysis is unlikely to encounter prob-
lems associated with multicollinearity.

Quantitative analysis of cost functions in 
decision making
The use of regression for cost estimation and prediction can assist in a wide 
range of decision-making settings. However, this will only take effect if 
managers and financial controllers are prepared to engage with analytical 
techniques of cost estimation to complement the traditional methods of 
analysing costs based on technical estimates solely using knowledge, 
judgement and experience. Horngren et al (2009) reminds us:

‘Understanding how costs behave is a valuable technical skill. 
Managers look to management accountants to help them identify 
cost drivers, estimate cost relationships, and determine the fixed 
and variable components of costs’.

Planning Decisions
Regression techniques can be helpful in profit planning, budgeting and pricing 
decisions as managers are constantly making day-to-day operating decisions 
which affect revenue, cost and profit. The individual decisions themselves 
may only involve relatively modest-sized transactions, but when accumulated 
over a trading period they can have a dramatic influence on operating profit.

�� Developing regression equations to determine operating cost behaviour 
facilitates the assessment of business alternatives and opportunities using 
break-even analysis, flexible budgets and profit sensitivity techniques.
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�� Regression equations can be applied to the construction of flexible 
budgets which can be used to assess the likely impact on profits of `what 
if’ scenarios relating to new business transaction negotiations, pricing 
structures, sales volumes and business mix decisions.

�� Knowledge of the variable cost coefficient can also assist in ad hoc pricing 
decisions where the range of price discretion is required to be determined 
in order to submit competitive bids.

�� Providing estimates of total costs and average variable costs per unit, 
regression enables the computation of the range of probable error 
through use of the standard error of the estimate and standard error of 
the variable cost coefficient.

�� The use of crude unqualified estimates as a basis for cost prediction is no 
longer acceptable in today’s operating environment. As far back as the 
1960s the use of crude unqualified estimates have been severely criticise. 
Among others Amey (1961) argued that ‘much of their [accountants’] 
apparent precision is found to be spurious; no self-respecting statistician 
would present an estimate without indicating the error to which it 
was thought to be subject’; with apparently little evidence of change 
occurring in the intervening 50 years, particularly in service sectors, such 
as hospitality.   

Control Decisions
Regression analysis can also contribute to a number of areas of routine cost 
control, in the following ways:

�� The regression equations applied to construct flexible budgets can be 
used to compare actual costs incurred at a specific level of activity with 
predicted costs at the same level. Here cost predictions for an original 
(static) budget are flexed (adjusted) to the relevant level of activity 
achieved during a period. This can move towards determining variances 
for subsequent evaluation, such as assessing the efficiency of delivering 
products and services and measuring the impact of volume changes and 
business mix on profit margins.

�� Cost standards developed from statistical analysis of historical data do 
not necessarily reflect efficient or optimal performance, but may actually 
indicate the level of cost behaviour that occurred in the past. The standards 
can be used to suggest whether current operations have improved or 
deteriorated from the past, but cannot in themselves suggest whether 
past activities represented an acceptable level of efficiency. In order to 
ascertain this detailed examination of the department in question would 
need to be carried out. As Kaplan (1982) pointed out: 

`High standard errors (or low r2) are a result of large fluctuations 
in the cost centre. Thus, if the analyst, when modelling the cost 
behaviour in a cost centre, observes a poor fit to the historical 
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data, he or she may conclude that the cost centre is not operating 
in a state of statistical control – that too many large fluctuations 
have occurred that cannot be explained by variations in the cost 
centre’s activity levels’. In the event of such findings, operating 
procedures and working arrangements could be reviewed in an 
attempt to secure a reduction in the erratic cost behaviour patterns 
in the department’.

It becomes apparent, therefore, that cost investigations of a particular 
department can be prompted by either current or past results, i.e. changes 
in the mean of the actual data (cost observations which are more than two 
standard errors from the predicted figure), or by a configuration of historical 
cost data that is regarded as being too widely dispersed.

In conclusion, quantitative cost analysis offers an objective approach to 
complement the more subjective methods of analysing costs. With the 
widespread availability of computers and software packages statistical cost 
analysis is accessible and can provide a powerful contribution to routine, day-
to-day, decision making. 
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